Modeling Topic Control in Conversations using Speaker-centric Nonparametric Topic Models

نویسندگان

  • Viet-An Nguyen
  • Jordan Boyd-Graber
  • Philip Resnik
  • Deborah Cai
  • Jennifer Midberry
  • Yuanxin Wang
چکیده

Identifying influential speakers in multi-party conversations has been the focus of research in communication, sociology, and psychology for decades. It has been long acknowledged qualitatively that controlling the topic of a conversation is a sign of influence. To capture who introduces new topics in conversations, we introduce SITS—Speaker Identity for Topic Segmentation—a nonparametric hierarchical Bayesian model that is capable of discovering (1) the topics used in a set of conversations, (2) how these topics are shared across conversations, (3) when these topics change during conversations, and (4) a speaker-specific measure of “topic control”. We validate the model via evaluations using multiple datasets, including work meetings, online discussions, and political debates. Experimental results confirm the effectiveness of SITS in both intrinsic and extrinsic evaluations. On an intrinsic evaluation, SITS outperforms existing methods on topic segmentation. In an extrinsic evaluation, we annotated influencers in conversations and showed that methods for V.-A. Nguyen Computer Science, University of Maryland E-mail: [email protected] J. Boyd-Graber iSchool and UMIACS, University of Maryland E-mail: [email protected] P. Resnik Linguistics and UMIACS, University of Maryland E-mail: [email protected] D. Cai Communications, Temple University E-mail: [email protected] J. Midberry Communications, Temple University E-mail: [email protected] Y. Wang Communications, Temple University E-mail: [email protected] 2 Nguyen, Boyd-Graber, Resnik, et al. detecting influencers based on SITS outperform traditional, popular methods using structural patterns of conversations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting speaker roles and topic changes in multiparty conversations using latent topic models

Accessing and browsing archives of multiparty conversations can be significantly facilitated by labeling them in terms of high level information. In this paper, we investigate automatic labeling of speaker roles and topic changes in professional meetings. Using the framework of unsupervised topic modeling we express speaker utterances as mixture of latent variables, each of which is governed by...

متن کامل

SITS: A Hierarchical Nonparametric Model using Speaker Identity for Topic Segmentation in Multiparty Conversations

One of the key tasks for analyzing conversational data is segmenting it into coherent topic segments. However, most models of topic segmentation ignore the social aspect of conversations, focusing only on the words used. We introduce a hierarchical Bayesian nonparametric model, Speaker Identity for Topic Segmentation (SITS), that discovers (1) the topics used in a conversation, (2) how these to...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

Modeling Topic and Role Information in Meetings Using the Hierarchical Dirichlet Process

In this paper, we address the modeling of topic and role information in multiparty meetings, via a nonparametric Bayesian model called the hierarchical Dirichlet process. This model provides a powerful solution to topic modeling and a flexible framework for the incorporation of other cues such as speaker role information. We present our modeling framework for topic and role on the AMI Meeting C...

متن کامل

A Nonparametric N-Gram Topic Model with Interpretable Latent Topics

Most nonparametric topic models such as Hierarchical Dirichlet Processes, when viewed as an infinite-dimensional extension to the Latent Dirichlet Allocation, rely on the bag-of-words assumption. They thus lose the semantic ordering of the words inherent in the text which can give an extra leverage to the computational model. We present a new nonparametric topic model that not only maintains th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013